L-functions and character sums for quadratic forms (I)
نویسندگان
چکیده
منابع مشابه
On Character Sums of Binary Quadratic Forms
We establish character sum bounds of the form ∣∣∣∣ ∑ a≤x≤a+H b≤y≤b+H χ(x + ky) ∣∣∣∣ < p−τH2, where χ is a nontrivial character (mod p), p 1 4 +ε < H < p, and |a|, |b| < p H. As an application, we obtain that given k ∈ Z\{0}, x + k is a quadratic non-residue (mod p) for some 1 ≤ x < p 1 2e. Introduction. Let k be a nonzero integer. Let p be a large prime and let H ≤ p. We are interested in the c...
متن کاملLarge Character Sums: Burgess’s Theorem and Zeros of L-functions
We study the conjecture that ∑ n≤x χ(n) = o(x) for any primitive Dirichlet character χ (mod q) with x ≥ q , which is known to be true if the Riemann Hypothesis holds for L(s, χ). We show that it holds under the weaker assumption that ‘100%’ of the zeros of L(s, χ) up to height 14 lie on the critical line. We also establish various other consequences of having large character sums; for example, ...
متن کاملQuadratic class numbers and character sums
We present an algorithm for computing the class number of the quadratic number field of discriminant d. The algorithm terminates unconditionally with the correct answer and, under the GRH, executes in Oε(|d|) steps. The technique used combines algebraic methods with Burgess’ theorem on character sums to estimate L(1, χd). We give an explicit version of Burgess’ theorem valid for prime discrimin...
متن کاملGauss Sums & Representation by Ternary Quadratic Forms
This paper specifies some conditions as to when an integer m is locally represented by a positive definite diagonal integer-matrix ternary quadratic form Q at a prime p. We use quadratic Gauss sums and a version of Hensel’s Lemma to count how many solutions there are to the equivalence Q(~x) ≡ m (mod p) for any k ≥ 0. Given that m is coprime to the determinant of the Hessian matrix of Q, we can...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Arithmetica
سال: 1968
ISSN: 0065-1036,1730-6264
DOI: 10.4064/aa-14-1-35-50